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1. Introduction

Nonperturbative results on supersymmetric (susy) theories such as the famous Seiberg-

Witten solution of N = 2 super-Yang-Mills theories in 4 dimensions [1, 2] rely crucially on

the presence of solitons which saturate the Bogomolnyi bound at both the classical level [3]

and at the quantum level [4], namely when equality of mass and central charge gives rise to

multiplet shortening. Results which are remarkably similar to those of Seiberg and Witten

have been obtained by Dorey [5] for a two-dimensional N = (2, 2) U(1) gauge theory with

N chiral multiplets of equal charge and twisted mass terms [6]. At large gauge coupling e

this theory is in a Higgs phase whose low-energy limit is described by a classically massive

N = (2, 2) CPN−1 model with BPS-saturated dyons which can carry both topological and

Noether charges. The dual (mirror) theory, where the (dimensionful) gauge coupling e is

smaller than all other mass scales, can be solved exactly and because the BPS spectrum

is independent of e this yields all-order results for the spectrum of the CPN−1 model as a

function of the twisted masses. Moreover these results turned out to be described by the

same elliptic curve that appeared in the Seiberg-Witten solution of N = 2 gauge theories

in four dimensions.

Recently, there has been renewed interest in this model since it arises also as the

effective field theory of so-called confined nonabelian monopoles, which reside within non-

abelian flux tubes (vortices) of N = 2 gauge theories with gauge group SU(N)×U(1) and
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N flavors [7 – 13]. This connection in fact explained the observation of ref. [5] of a striking

parallel between four-dimensional N = 2 super-Yang-Mills theory and the two-dimensional

N = (2, 2) CPN−1 model, because the four-dimensional Fayet-Iliopoulos parameter does

not enter the formulae for the spectrum of the BPS sector so that they cover both the Higgs

and the Coulomb branches. The theories giving rise to confined monopoles in the Higgs

phase have an analytically accessible quasiclassical regime which corresponds to twisted

masses that are much larger than the scale of the asymptotically free CPN−1 model. There

the coupling constant of this effective theory is small and permits perturbative calculations.

A perturbative calculation of the quantum mass of the kink solution of the N = (2, 2)

CP1 model with twisted mass and a comparison with the exact results obtained from the

dual theory has been made already in the original paper by Dorey [5], however without

attempting accuracy beyond the logarithmic term that shows up at one-loop order. As has

been pointed out recently by Shifman, Vainshtein and Zwicky [14], the finite contribution

that remains after absorbing the logarithmic term into the renormalized coupling is asso-

ciated with an anomalous contribution to the central charge analogous to the one found

some time ago in ordinary susy kinks [15 – 17] and which was subsequently located also in

N = 2 super-Yang-Mills theories both in its Coulomb phase [18] and its Higgs phase [11].

In the present paper we complete the analysis begun by Dorey [5], namely a direct

calculation of the quantum mass of the CP1 kink with twisted mass and also of the central

charges. Such a calculation involves the fluctuations of fermionic and bosonic fields in the

background of the kink which despite isospectrality do not cancel due to a nonvanishing

difference of the spectral densities. The resulting expression is in fact ultraviolet divergent

and already in the minimally susy kink model presents a number of intricacies and pit-

falls. For example, a sharp energy cutoff regularization incorrectly produces a null result

for the finite terms of the one-loop contribution to the mass [19, 20] (and would do so

also in the case of the susy CP1 kink). The inconsistency of this method and its result

with known results from the (nonsupersymmetric) sine-Gordon model was pointed out in

ref. [21], which in 1997 reopened the issue of how to calculate quantum corrections for

susy solitons. However, the alternative calculation presented in ref. [21] which used mode

number regularization in finite volumes was polluted by boundary energy that occurs with

periodic or antiperiodic boundary conditions. In ref. [22] this issue was resolved (by use

of topological boundary conditions) which showed that the net quantum correction to the

mass of a minimally susy kink is negative. Since there appeared to be no quantum cor-

rection to the central charge [20], this presented a problem with the BPS bound, which

the authors of ref. [22] conjectured to be the result of a quantum anomaly. The latter was

finally located by Shifman, Vainshtein, and Voloshin [15] as an anomalous additive contri-

bution to the central charge operator which restores BPS saturation (which did not seem

to be required by standard multiplet shortening arguments [4], but could eventually be ex-

plained through the possibility of single-state supermultiplets [23, 24]). These anomalous

contributions to the central charge were confirmed in later works, e.g. ref. [16], although

by using dimensional regularization methods ref. [25] seemed to obtain the required finite

corrections to both mass and central charge without the need of an anomalous contribution.

In ref. [26, 17, 18], three of us performed one-loop calculations using a variant of
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dimensional regularization in the presence of solitons which embeds the solitons in higher

dimensions, from where susy-preserving dimensional reduction is possible. This reproduces

the correct results for the quantum mass while indeed giving null results for the original

central charge operator. However, anomalous contributions arise from nonvanishing bulk

contributions to the momentum density in the extra dimension which break reflection

invariance in the extra dimension, related to the fact that fermionic zero modes turn

into chiral domain wall fermions. (Some additional issues arise for susy vortices in 2+1

dimensions and the N = 4 monopole in 3+1 dimensions, see refs. [27 – 29]). In the present

paper we apply our scheme to the susy CP1 model with twisted mass term.

In superspace, the massless N = 1 CP1 model in 4 dimensions or the N = (2, 2) model

in 2 dimensions can be written as

L =

∫

d4θ K(Φ, Φ̄), K = r ln(1 + Φ̄Φ) (1.1)

with Φ a conventional chiral superfield, D̄αΦ = 0.

In components, this reads, using the conventions of [30],

L = − r

ρ2

{

∂mφ̄∂mφ + iψ̄α̇σ̄mα̇α

(

∂m − 2

ρ
φ̄α(∂mφ)

)

ψ +
1

2ρ2
ψψψ̄ψ̄

}

, ρ ≡ 1 + φ†φ, (1.2)

where m = 0, . . . 3, and two of the ∂m put to zero in the dimensional reduction to 2

dimensions. In 2 dimensions, the gauge coupling g defined by r = 2
g2 is dimensionless and

its beta function is negative, so that the model is asymptotically free. Correspondingly,

at the quantum level this theory has a mass gap determined by the renormalization group

invariant scale Λ.

A classically massive version of the model in dimensions lower then 4 which preserves

the entire supersymmetry can be obtained by introducing a background gauge field with

nonvanishing value in the components corresponding to the dimensions eliminated in the

reduction process,

∂m → ∂m + iV̂m, V̂m∂mΦ ≡ 0. (1.3)

The mass terms provided by V̂m = const. 6= 0 have been termed twisted [6], because a gauge

field strength superfield Σ in two dimensions is a twisted chiral superfield [31], satisfying

D̄RΣ = DLΣ = 0 instead of the conventional chiral constraint.

Dimensional reduction from 4 to 2 dimensions thus gives the possibility for introducing

two mass parameters, which can be combined into one complex mass parameter m̃ =

|m|eiβ . The phase β corresponds to possible rotations in the two dimensions used for

the dimensional reduction, and it turns out that because of the anomalous nature of the

corresponding U(1)A transformation its effect can be absorbed into a θ term that can be

added to the 2-dimensional Lagrangian.

The introduction of a mass term has the effect of providing the (nonnegative) potential

term

V =
r

ρ2
|m|2φ†φ =

r|m|2φ†φ

(1 + φ†φ)2
(1.4)

with zeros at φ = 0 and φ = ∞, which correspond to the north and south pole of the

Riemann sphere, or CP1, obtained by compactifying the complex plane parametrized by φ.
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The CP1 kink (a close relative of the Q kinks studied originally in ref. [32]) is the static field

configuration which asymptotes to these two different minima for left and right infinity.

We shall study its one-loop quantum corrections in the perturbative regime provided by

m ≫ Λ, whereby the coupling g remains small for all energies.

2. The model in 3 dimensions

Dimensional reduction of the N = (1, 1) model (1.2) in 4 dimensions with the modifica-

tion (1.3) leads to the N = (2, 2) sigma model with twisted mass term and the CP1 kink

solution in 2 dimensions, but in the following we shall reduce only from 4 to 3 dimensions,

keeping the extra dimension for the purpose of susy preserving dimensional regularization

by dimensional reduction. The dimension needed to generate the twisted mass term as a

vev of a (background) gauge field component is thus compactified to vanishing size, but

the other extra dimension is kept. The CP1 kink of the 1+1-dimensional model becomes a

CP1 domain wall (a line) in 2+1 dimensions.

The action of the 2+1-dimensional model contains one complex scalar and one complex

2-component spinor1

L = − r

ρ2

[

∂µφ†∂µφ + m2φ†φ + ψ̄γµ∂µψ + mψ̄ψ

(

1 − 2φ†φ

ρ

)

−2

ρ
(ψ̄γµψ)(φ†∂µφ) − 1

ρ2
(ψ̄ψ)(ψ̄ψ)

]

, µ = 0, 1, 2, ρ ≡ 1 + φ†φ, (2.1)

where we have arranged for standard kinetic and mass terms by choosing a slightly uncon-

ventional ordering of Pauli matrices for σ̄M = (−1,−σ1,−σ3,−σ2) in (1.2) together with

γ0 = −iσ2. This fixes our conventions for the γ matrices in (2.1) as

γ0 = −iσ2, γ1 = −σ3, γ2 = σ1, (2.2)

in agreement with the conventions used in our previous papers on susy kinks and their

embedding in 2+1 dimensions [26, 17, 33] except for the overall sign of γ1. The direction

of x2 ≡ y will be our regulator dimension, and the two-dimensional kink to be introduced

shortly will depend only on x1 ≡ x. The reason for using σ3 in γ1 rather than σ1 is that this

simplifies the fermionic fluctuation equations in the kink background (see below). Note that

in our conventions the spinor components ψ =
(

ψ+

ψ−

)

correspond to positive and negative

two-dimensional chirality with respect to the regulating dimension x2 (moving “up” and

“down” the domain wall); the more conventional left and right moving components of

the final two-dimensional theory are related to the former by ψR = (ψ+ + ψ−)/
√

2 and

ψL = (ψ+ − ψ−)/
√

2.

The Lagrangian density (2.1) is hermitian up to the antihermitian surface term

∂µ

(

r
ρ2 ψ̄γµψ

)

. One can write this model in a ψ-ψ̄ symmetric way, or with the deriva-

1Our conventions are {γµ, γν} = 2ηµν with ηµν = diag(−1, +1, +1), ψ̄ = ψ†iγ0, thus (γ0)2 = −1 and

γµνρ = −ǫµνρ, γµρ = −ǫµρσγσ with ǫ012 = +1.
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tives acting on ψ̄ instead of ψ, the only modifications being then, respectively,

− r

ρ2

[

. . . +
1

2

(

ψ̄γµ
↔
∂µψ

)

. . . − 1

ρ
(ψ̄γµψ)(φ†

↔
∂µφ) . . .

]

(2.3)

and

− r

ρ2

[

. . . −
(

ψ̄γµ
←
∂µψ

)

. . . +
2

ρ
(ψ̄γµψ)(φ†

←
∂µφ) . . .

]

, (2.4)

where it is understood that derivatives never act outside parentheses.

These actions are invariant under the following N = (2, 2) rigid susy transformations

with two complex parameters ǫ+, ǫ− with ǫ =
(

ǫ+

ǫ−

)

,

δφ = ǭψ, δφ† = ψ̄ǫ,

δψ = γµ∂µφǫ − mφǫ +
2φ†

ρ
(ǭψ)ψ,

δψ̄ = −ǭγµ∂µφ† − ǭφ†m +
2φ

ρ
(ψ̄ǫ)ψ̄. (2.5)

3. The susy algebra

The susy algebra on φ, φ†, ψ has the following form

[δ(ǭ1), δ(ǭ2)] = [δ(ǫ1), δ(ǫ2)] = 0,

[δ(ǫ1), δ(ǭ2)]

(

φ

φ†

)

= (ǭ2γ
µǫ1)∂µ

(

φ

φ†

)

∓ m(ǭ2ǫ1)

(

φ

φ†

)

[δ(ǫ1), δ(ǭ2)]ψ = (ǭ2γ
µǫ1)∂µψ − m(ǭ2ǫ1)ψ +

1

2
(ǭ2ǫ1)F − 1

2
(ǭ2γ

µǫ1)γµF, (3.1)

where F is the complete field equation2 for ψ,

F = /∂ψ + mψ

(

1 − 2φ†φ

ρ

)

− 2

ρ
γµψ(φ†∂µφ) − 2

ρ2
(ψ̄ψ)ψ. (3.2)

(The susy commutator for ψ̄ is easily derived by using δψ̄ = δψ†iγ0.)

The above algebra has the expected form of

{Q, Q̄} = γµPµ + iZ (3.3)

where Pµ is the antihermitian translation generated represented by ∂µ in (3.1) and Z is

the anti-hermitian central charge proportional to the unit matrix which takes on the same

value on both φ and ψ, because those are in the same multiplet (and opposite value on the

complex conjugate multiplet with φ† and ψ̄).

The susy currents can be derived from the Noether method, by letting the rigid ǫ

become local. One finds

jµ =
r

ρ2

[

γρ(∂ρφ
†) + mφ†

]

γµψ, j̄µ =
r

ρ2
ψ̄γµ [γρ(∂ρφ) − mφ] . (3.4)

2Note that as in any nonlinear theory, the fermionic terms in the action do not vanish on-shell; rather

on-shell a term (ψ̄ψ)(ψ̄ψ) remains.
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One may check that δǭφ = [−iǭQ, φ], δǭψ̄ = [−iǭQ, ψ̄] and δǫψ̄ = [−iQ̄ǫ, ψ̄] with Q =
∫

j0dx dy reproduce the transformation rules with canonical conjugate momenta

p(φ) =
r

ρ2
φ̇† +

2r

ρ3
(ψ̄γ0ψ)φ†, p(φ†) =

r

ρ2
φ̇, p(ψ) =

r

ρ2
ψ̄γ0 (3.5)

and {p(ψ)(t,x), ψ(t,y)} = −iδ2(x− y). (No Dirac brackets are necessary if one uses (2.1)

and replaces ψ̄ by p(ψ) as indicated, but note that (3.5) implies that p(φ†) is not equal to

(p(φ))† if one uses naive hermitian conjugation.)

4. Classical CP1 kink and domain line

The classical kink (domain wall) solution interpolating between the two minima φ = 0

and φ = ∞ of the potential (1.4) for the bosonic fields is most easily found by completing

squares in the bosonic part of the classical Hamiltonian density. Assuming dependence of

φ on only the x coordinate, we have

H =
r

ρ2
(∂xφ† − mφ†)(∂xφ − mφ) + ∂x

(−rm

ρ

)

. (4.1)

So the classical kink solution and its mass are

φK = em(x−x0)+iα, Mcl = rm. (4.2)

There are two real moduli, x0 and α, and correspondingly two real (one complex) zero

modes, see (6.12).

The classical kink solution preserves one half of susy: from (2.5) with δψ = 0 and

γ1 =
(−1

0
0
1

)

we see that the remaining susy is given by ǫ =
( 0

ǫ−

)

. The broken susy with

ǫ =
(

ǫ+

0

)

produces the fermionic zero mode

ψ ∼ φK

(

ǫ+

0

)

. (4.3)

Since the generators of the preserved susy are Q̄ǫ = −i(Q+)†ǫ− and ǭQ = i(ǫ−)†Q+,

we see that Q+ and (Q+)† preserve the solitonic ground state |sol〉. BPS saturation at the

quantum level thus requires

〈sol|{Q+, (Q+)†}|sol〉 = 0. (4.4)

This implies that
∫

(T 0
0 + T 0

2)dx dy should vanish. In the classical 2-dimensional model,

T 0
2 is a regularized central charge density, and ζ0 a second one. To evaluate them at the

quantum level, we need to obtain the currents T µ
ν and ζµ.

5. Energy momentum tensor and central charge currents

The variation δ(ǭ)jµ vanishes, as one easily checks, but for δ(ǫ)jµ we find, after tedious

but straightforward algebra, using Fierz rearrangements but never discarding terms that

are total derivatives, the following results

δ(ǫ)jµ = T µ
νγ

νǫ + ζµǫ (µ, ν = 0, 1, 2) (5.1)
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where

T µ
ν =

r

ρ2

[

∂µφ†∂νφ + ∂νφ
†∂µφ† − δµ

ν (∂λφ†∂λφ + m2φ†φ) − 1

2
(∂µψ̄)γνψ − 1

2
(∂ν ψ̄)γµψ

+
1

ρ
(∂µφ†)φψ̄γνψ +

1

ρ
(∂νφ†)φψ̄γµψ − δµ

ν

1

ρ2
(ψ̄ψ)(ψ̄ψ) − 1

2
δµ
ν F̄ψ

+ǫµ
ν
λ

{

m∂λ(φ†φ) − m

2
ψ̄γλψ

(

1 − 2φ†φ

ρ

)

+
1

2
(∂λψ̄)ψ − (∂λφ†)φ

ρ
ψ̄ψ

}]

.(5.2)

Here F̄ is the complete field equation of ψ̄,

F̄ = −∂µψ̄γµ + mψ̄

(

1 − 2φ†φ

ρ

)

+
2

ρ
ψ̄(/∂φ†)φ − 2

ρ2
(ψ̄ψ)ψ̄. (5.3)

On-shell T µ
ν is not symmetric, nor should it be symmetric, for two reasons: it is not

the gravitational stress tensor, and it may contain total derivatives which are antisymmetric

in µ, ν. These total derivatives will contribute to the central charge. In order to obtain

a T µ
ν which is symmetric up to total derivatives (and in which ψ and ψ̄ appear on equal

footing) one can proceed in two ways: either one adds δ(ǭ1)(j̄
µǫ2) to δ(ǫ2)ǭ1j

µ (which both

come from [ǭ1Q, Q̄ǫ2]) and divides by 2, or one partially integrates various terms in T µ
ν ,

keeping track of total derivatives. The result is the same and reads

T µ
ν =

r

ρ2

[

∂µφ†∂νφ + ∂νφ†∂µφ† − δµ
ν (∂λφ†∂λφ + m2φ†φ) +

1

4
(ψ̄γµ

↔
∂νψ) +

1

4
(ψ̄γν

↔
∂µψ)

− 1

2ρ
(φ†

↔
∂µφ)ψ̄γνψ − 1

2ρ
(φ†

↔
∂νφ)ψ̄γµψ − δµ

ν

1

ρ2
(ψ̄ψ)(ψ̄ψ) − 1

4
δµ
ν (F̄ψ + ψ̄F )

]

+rǫµ
ν
λ∂λ

{

−m

ρ
+

1

4ρ2
ψ̄ψ

}

. (5.4)

The first two lines now correspond to the gravitational stress tensor, where all terms with

δµ
ν can be written as δµ

νL with L from (2.3), and the last term, which is a total derivative,

is the only one antisymmetric in µ, ν. Note that although the various ways of writing

the action, eqs. (2.1)–(2.4), differ by total derivatives, there is no ambiguity in the total

derivatives in this T µ
ν , because it is by definition due to the susy variation of the susy

current jµ, and the latter is unambiguous.3

The central charge current ζµ is found to be given by

ζµ = ǫµνλ ∂νφ
†∂λφ

ρ2
+

m

ρ2
(φ†

↔
∂µφ) − m

2ρ2
(ψ̄γµψ)

(

1 − 2φ†φ

ρ

)

+
1

ρ3
(∂λφ†)φψ̄γλγµψ − 1

2ρ2
(∂λψ̄)γλγµψ. (5.5)

Again we can either partially integrate half of the last term, or subtract ζ̃µ (and divide by

2), where δ(ǭ)j̄µ = T̃ µ
ν(−ǭγν) + ζ̃µǭ. The result is the same on-shell and reads

ζµ = ǫµνλ ∂νφ
†∂λφ

ρ2
+

m

ρ2

[

(φ†
↔
∂µφ) − ψ̄γµψ

(

1 − 2φ†φ

ρ

)]

+
1

2ρ2
F̄ γµψ, (5.6)

where we used that (ψ̄ψ)(ψ̄γµψ) = 0.

3We exclude topological terms in the susy current because they would lead to modifications of the susy

transformations at the boundary.
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6. Quantization

For the evaluation of one-loop quantum corrections we need to obtain the fluctuation

equations in the CP1 kink background φK .

The fermionic fluctuations satisfy the field equation (3.2), and to linear order in ψ with

φ = φK one has

/∂ ψ + mψ

(

1 − 2φ†φ

ρ

)

− 2

ρ
γµψ(φ†

K∂µφK) = 0. (6.1)

Using the explicit form of the kink solution (4.2), with x0 = 0 and α = 0 for simplicity,

and our representation of the γ matrices as given in (2.2) we obtain

(

L̃ −∂0 + ∂y

∂0 + ∂y L

) (

ψ+

ψ−

)

= 0,
L̃ = −∂x + m,

L = ∂x + m − 4me2mx/(1 + e2mx).
(6.2)

With respect to an inner product defined by (λ, χ) =
∫

1
ρ2 λ∗χdx, the operator L̃ is the

adjoint of L, (λ,Lχ) = (L̃λ, χ) up to surface terms. Iterating (6.2) yields

(LL̃ − ∂2
y + ∂2

0)ψ+ = 0, (6.3)

(L̃L − ∂2
y + ∂2

0)ψ− = 0. (6.4)

The operators LL̃ and L̃L are selfadjoint without surface terms, so they yield a complete

set of eigenfunctions. Let ϕk(x) be a solution of

LL̃ϕk = ω2
kϕk with ω2

k = k2 + m2, (6.5)

and let

sk =
1

ωk
L̃ϕk. (6.6)

Then in second quantization

(

ψ+

ψ−

)

=
1√
r

∫

dk dǫℓ

(2π)(1+ǫ)/2

1√
2ω

[

αkℓ

(√
ω + ℓ ϕk(x)√
ω − ℓ isk(x)

)

eiℓy−iωt

+ β†
kℓ

( √
ω + ℓ ϕ∗

k(x)

−
√

ω − ℓ is∗k(x)

)

e−iℓy+iωt

]

+
1√
r

∫

dǫℓ

(2π)ǫ/2
γℓ

(

ϕ0(x)

0

)

eiℓ(y−t) , (6.7)

where
(

ψ+

ψ−

)

satisfies (6.2), and ω2 ≡ k2 + ℓ2 + m2. Here ℓ is the momentum component

along the domain wall, and we have already indicated that dimensional regularization by

dimensional reduction will eventually be performed by sending ǫ from 1 to 0. The last

term is due to the fermionic zero mode, which in dimensions larger than 2 turns into a

continuum of massless modes localized along the domain line and with definite chirality

with respect to the latter. The correct normalization of this term can be obtained by taking

the formal limit ωk → 0 in the nonzero mode terms and combining the terms with ℓ > 0
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and ℓ < 0 into one term with −∞ < ℓ < ∞, setting {γℓ, γ
†
ℓ′} = δ(ℓ − ℓ′). Note that γℓ (γ†

ℓ )

have the meaning of annihilation (creation) operators only for ℓ > 0 and that for ℓ < 0

this is to be reversed. As (6.7) shows, the positive frequency modes have momentum in

positive y-direction only, so that there is a breaking of parity invariance with respect to

the regulator dimension. The opposite breaking would have taken place with the choice

γ2 = −σ1, which gives a nonequivalent second representation of the Clifford algebra in 3

dimensions.

The bosonic fluctuations η are obtained from φ = φK + η, and after some work one

finds for their linearized field equations the same result as for ψ+,

(LL̃ − ∂2
y + ∂2

0)η = 0. (6.8)

To solve this equation we first look at its behaviour at large |x|, where LL̃ → −∂2
x +4m∂x−

3m2 as x → +∞ and LL̃ → −∂2
x + m2 as x → −∞. We set then

η(x) = (1 + e2mx)g(x) (6.9)

and find for g(x) the differential equation

[

−∂2
x + m2 − 2m2

cosh2(mx)

]

g = ω2
k g. (6.10)

This is the l = 1 case of the sequence of operators

Ol = A†
l Al = −∂2

z + l2 − l(l + 1)

cosh2 z
(6.11)

with Al = ∂z + l tanh z and A† = −∂z + l tanh z, where z = mx. For l = 1, this system,

which also appears in the 2-dimensional sine-Gordon model,4 contains one zero mode, no

bound state, and a continuum of solutions, given respectively by

g0(x) =

√

m

2

1

cosh(mx)
, (6.12)

gk(x) =
1√
2π

−ik + m tanh(mx)

ωk
eikx. (6.13)

Note that g0 corresponds to ϕ0(x) = ρK(x)g0(x) =
√

2memx which is indeed proportional

to the function arising from differentiating φK in (4.2) with respect to either of the moduli

x0 or α.

Then in second quantization

η(t, x, y) =
1√
r

∫

dk dǫℓ

(2π)(1+ǫ)/2

1√
2ω

[

aklϕk(x)eiℓy−iωt + b†klϕ
∗
k(x)e−iℓy+iωt

]

+
1√
r

∫

dǫℓ

(2π)ǫ/2

1
√

2|ℓ|
[

cℓϕ0(x)eiℓy−i|ℓ|t + d†ℓϕ0(x)e−iℓy+i|ℓ|t
]

, (6.14)

4The sine-Gordon model also appears in the dual formulation of the CP1 model [34 – 36]
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with ω2 = ω2
k + ℓ2 = k2 + ℓ2 + m2. Given the normalization of gk(x) to plane waves at

infinity, we have the following orthonormality relations
∫

dx

ρ2(x)
ϕ2

0(x) = 1,

∫

dx

ρ2(x)
ϕ∗

k(x)ϕk′(x) = δ(k − k′),

∫

dx

ρ2(x)
ϕ0(x)ϕk(x) = 0. (6.15)

We shall also need the difference of the spectral densities associated with the continuum

solutions ϕk and sk, which is defined by

∆σ(k) =

∫

dx

ρ2(x)

(

|ϕk(x)|2 − |sk(x)|2
)

. (6.16)

Using sk = 1
ωk

L̃ϕk and partially integrating, only a surface term is left, and we find

∆σ(k) =
ϕ∗

kL̃ϕ

ω2
kρ

2(x)

∣

∣

∣

x=∞

x=−∞
=

−2m

ω2
k

=
−2m

k2 + m2
. (6.17)

This result agrees with the analysis of ref. [5], where a nonlinear transformation of the

fluctuating fields was employed that simplified the fluctuation equations, but which cor-

responds to a reparametrization of the fields that cannot be used in perturbation theory

about the topologically trivial vacuum, where the renormalization of the model is to be

fixed (one of the real fields has no kinetic term in the vacuum). Our approach thus has the

advantage of not having to combine results from calculations using different parametriza-

tions of the target space, but a posteriori we find that no mistake would have been made

by doing so.

7. The mass of the CP1 kink

The classical kink mass Mcl = rm gets quantum corrections from the zero point energies

of the fluctuating fields and from renormalization,

M (1) =

∫

dx 〈T (1)
00 〉 +

∆r

r
Mcl, (7.1)

where the subscript (1) refers to one-loop order contributions and where we have anticipated

that only r and not m gets renormalized in our model, which is in fact true to all orders

in perturbation theory [37].

The one-loop renormalization r0 = r + ∆r of the coupling constant r ≡ 2/g2 can be

obtained from the scalar self energy corrections (or equivalently from the fermionic ones)

in the trivial vacuum. Imposing the renormalization condition that they vanish fixes ∆r,

x

∆r

+ + = 0 .
(7.2)

By straightforward calculation we find

+

= 2

∫

d2+ǫk

(2π)2+ǫ

p2 + m2 − (k2 + m2)

k2 + m2 − iǫ
.

(7.3)
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The integral with −(k2 + m2) in the numerator vanishes in dimensional regularization,

whereas the terms with p2 + m2 can be canceled by a counterterm ∆r, leaving m unrenor-

malized. This leads to

∆r =

∫

dk dǫℓ

(2π)1+ǫ

1

ω
, ω =

√

k2 + ℓ2 + m2, (7.4)

where the sign of this result corresponds to the well-known asymptotic freedom of this

model.

The bulk contributions to the mass are given by

〈T (1)
00 〉 =

〈

r

ρ2

(

∂0φ
†∂0φ + ∂kφ

†∂kφ + m2φ†φ − 1

2
ψ̄γ0

↔
∂0ψ

)〉

(7.5)

where we dropped the terms with the fermionic field equations. Rewriting the bosonic

terms in this expression as (2rρ−2∂0φ
†∂0φ−L) and using that for any action 〈L(2)

ferm.〉 = 0

but L(2)
bos = 0 only up to boundary terms, we can recast 〈T (1)

00 〉 as follows

〈T (1)
00 〉 =

r

ρ2

〈

2∂0η
†∂0η − ψ̄γ0∂0ψ

〉

+ total derivatives (7.6)

The total derivatives are given by

r∂x

[

mφ2
K

ρ3
K

(η + η†)2
]

− r∂µ

[

η∂µη†

ρ2
K

]

, (7.7)

but they do not contribute to the energy. (The propagator 〈ηη†〉 is proportional to ρ2
K ,

and the derivatives of ρK in the second term cancel the first term. One is left with a

ρ-independent term with a derivative on the distorted plane wave, and this term is the

same at plus and minus infinity.)

Substituting the mode expansion of η and ψ yields

M
(1)
bulk =

∫

dx 〈T (1)
00 〉 =

∫

dx

ρ2

∫

dk dǫℓ

(2π)1+ǫ2ω

[

2ω2|ϕk|2 − ω
{

(ω + ℓ)|ϕk|2 + (ω − ℓ)|sk|2
}]

=

∫

dx

ρ2

∫

dk dǫℓ

(2π)1+ǫ

ω

2

(

|ϕk(x)|2 − |sk(x)|2
)

= −
∫

dk dǫℓ

(2π)1+ǫ

mω

ω2
k

, (7.8)

where we used the expression for the difference of spectral densities obtained in eq. (6.17).

We see here clearly the sums over zero-point energies (
∑

~ω for complex scalars, −∑

~ω

for complex fermions) and that despite of supersymmetry and isospectrality there is a net

contribution due to a difference of the spectral density of the continuum modes. This

contribution is in fact ultraviolet divergent and becomes finite upon combining it with the

counterterm ∆r m. Using the integral representation of ∆r of eq. (7.4) the total mass

correction is given by

M (1) = m

∫

dk dǫℓ

(2π)1+ǫ

(−mω

ω2
k

+
m

ω

)

= −m

∫

dk dǫℓ

(2π)1+ǫ

ℓ2

ωω2
k

= − 4

1 + ǫ

Γ(1 − ǫ/2)

(4π)1−ǫ/2
m1+ǫ/2 = −m

π
+ O(ǫ), (7.9)
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which is finite for all ǫ < 2. For ǫ = 0 one obtains the nonvanishing correction M (1) = −m/π

for the mass of the susy CP1 kink; for ǫ = 1 the result corresponds to the mass per unit

length of the domain line and then reads −m2/(4π). Both results are precisely twice the

universal5 amount one finds for minimally supersymmetric 1+1-dimensional kinks and 2+1-

dimensional domain lines, respectively, provided the latter are renormalized in a minimal

scheme [26]. By contrast, ordinary N = 2 susy kinks in Landau-Ginzburg type models

lead to complete cancellations of the quantum corrections [22] instead of the doubling we

found here for the N = 2 nonlinear sigma model with twisted mass term.

Next we shall consider the quantum corrections to the central charges, which have to

involve the same finite correction in order that BPS saturation holds. This will moreover

show that these finite corrections are associated with an anomaly.

8. The central charges

The central charge responsible for the saturation of the BPS bound is associated with

T 0
2 of the 3-dimensional model, as follows from (4.4). Its evaluation now involves bulk

contributions, boundary terms, and a renormalization term,

T 0
2 =

r

ρ2

[

−∂0φ
†∂2φ − ∂2φ

†∂0φ +
1

4
ψ̄γ0

↔
∂2ψ − 1

4
ψ̄γ2

↔
∂0ψ

]

+r∂x

(

m

ρ
− ψ̄ψ

4ρ2

)

+ ∆r ∂x
m

ρ
. (8.1)

As is usual for central charge corrections in susy models [20], loop corrections from the

bosonic surface terms cancel the renormalization term exactly,

r

〈

m

ρ

〉

∣

∣

∣

∞

−∞
= r

m

ρ3
2φ†〈ηη†〉φ

∣

∣

∣

∞

−∞
=

∫

dk dǫℓ

(2π)1+ǫ

m

ω
= m∆r = −∆r

m

ρ

∣

∣

∣

∞

−∞
. (8.2)

Quite unusually, the fermionic surface term does contribute and is even divergent,

− r

4ρ2
〈ψ̄ψ〉

∣

∣

∣

∞

−∞
=

1

ρ2

∫

dk dǫℓ

(2π)1+ǫ

ωk

8ω
(ϕks

∗
k + skϕ

∗
k)

∣

∣

∣

∞

−∞

=
1

ρ2

∫

dk dǫℓ

(2π)1+ǫ

1

8ω
(−2ρ∂xρ + 2mρ2)

∣

∣

∣

∞

−∞
= −m

2

∫

dk dǫℓ

(2π)1+ǫ

1

ω
. (8.3)

The bosonic bulk terms vanish since they are odd in ℓ, but the fermionic bulk terms

do contribute a nonvanishing momentum density along the domain line as follows,

−i

2
r

∫

dx

ρ2

∫

dk dǫℓ

(2π)1+ǫ

〈

(ψ+)†(∂2 − ∂0)ψ
+ + (ψ−)†(∂2 + ∂0)ψ

−
〉

= −1

2

∫

dx

ρ2

∫

dk dǫℓ

(2π)1+ǫ2ω
(ω2 + ℓ2)(|ϕk|2 − |sk|2) =

∫

dk dǫℓ

(2π)1+ǫ

(ω2 + ℓ2)m

2ωω2
k

, (8.4)

5Because of supersymmetry the difference in the spectral densities which is responsible for the nonzero

result is determined by the asymptotic values of the fermion mass and does not depend on other details of

the potential [21, 22].

– 12 –



J
H
E
P
0
9
(
2
0
0
7
)
0
6
9

where once again (6.17) has been used. The total central charge Z1 is finite and given by

Z
(1)
1 = m

∫

dk dǫℓ

(2π)1+ǫ

ω2 + ℓ2 − ω2
k

2ωω2
k

= m

∫

dk dǫℓ

(2π)1+ǫ

ℓ2

ωω2
k

. (8.5)

Comparing with (7.9), we see that BPS saturation holds, M (1) + Z
(1)
1 = 0.

The other central charge is Z2 =
∫

ζ0dx, where according to (5.6)

ζ0 = ǫ0νλ ∂νφ
†∂λφ

ρ2
+

m

ρ2

[

(φ†
↔
∂0φ) − ψ̄γ0ψ

(

1 − 2φ†φ

ρ

)]

. (8.6)

It generates the m-dependent terms in (3.1). Considering one-loop corrections, one finds

that in momentum space the first term gives rise to an expression which is odd in ℓ and

thus gives no contribution. The second term gives rise to

2m

ρ2
〈η†∂0η〉 −

4m

ρ3
φ†〈∂0ηη†〉φ (8.7)

and these terms vanish because they are independent of the extra momentum ℓ, leading

to a scaleless integral which is zero in dimensional regularization. The contribution from

the third term (8.6) is also ℓ-independent, because the ℓ in (ω + ℓ)|ϕk|2 and (ω − ℓ)|sk|2
(produced by the mode expansion (6.7)) cancels by symmetric integration, after which the

remaining ω cancels the energy denominator 1
2ω . Hence, the second central charge does

not receive any one-loop corrections.

9. Discussion and conclusions

As mentioned in the Introduction, an exact result for the central charge of the quantum CP1

kink in the nonlinear sigma model with a twisted mass term has been obtained by Dorey [5]

in a generalization of results of Hanany and Hori [6], which for the kink configuration reads

〈Z〉 =
1

π

√

m̃2 + 4Λ̃2 +
m̃

2
ln

m̃ −
√

m̃2 + 4Λ̃2

m̃ +
√

m̃2 + 4Λ̃2
, (9.1)

where m̃ = meiβ is the complex twisted mass parameter mentioned in the Introduction,

and Λ̃ is the renormalization-group invariant scale of the model, which is real in the absence

of a theta term. With the identification r = 2g−2 = 1
2π ln(m2/Λ̃2), the weak-coupling limit

of (9.1) corresponds to m ≫ Λ̃, and expanding (9.1) in this limit yields

|〈Z〉| =

∣

∣

∣

∣

m̃
1

2π
ln

(

−m̃2

Λ̃2

)

− m̃

π

∣

∣

∣

∣

. (9.2)

Identifying our (real) mass parameter m with |m̃| and choosing |β| = π/2 such that the

logarithm is real, (9.2) reduces to |〈Z〉| = rm − m/π, in agreement with our real results

for the one-loop correction of mass and central charge, (7.9) and (8.5).6

6A possible theta angle appears in the exact result (9.1) of ref. [5] as a phase of Λ̃ in such a way that

the phase of m̃ can be absorbed by a change of θ. However, using our scheme of dimensional regularization

by embedding the kink in one higher dimension we have to restrict ourselves to θ = 0.
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The possible imaginary part in 〈Z〉 has to be identified with the second central charge,

Z2 =
∫

dx ζ0, considered above, which contains the Noether charge density for the global

U(1) symmetry ψ → eiλψ, φ → eiλφ of (2.1). Besides the “purely magnetic” kink (4.2),

this model also contains dyons, which are given by replacing the constant α by α(t) = ωt

in (4.2), where at the quantum level ω is quantized by a Bohr-Sommerfeld condition. In

the above, we have considered a purely magnetic kink, but the exact result (9.1) shows

that for general β (and also for general θ) one has dyonic states. In our calculation we have

not obtained a contribution to Z2 so that our result corresponds to a purely imaginary

m̃ in (9.1). Such a null result for the U(1) charge of the solitonic ground state does

not contradict the fact that the latter should be defined as carrying fractional fermion

number [38] because of the presence of fermionic zero modes. Indeed, the U(1) charge

associated with the fermionic zero mode vanishes:

r

∫

dx

ρ2
〈−ψ̄γ0ψ

(

1 − 2φ†φ

ρ

)

〉 = −2mr

∫

dx

(1 + e2mx)2
e2mx

(

1 − 2e2mx

1 + e2mx

)

= 0, (9.3)

whereas the fermion number charge density is given by r
ρ2 ψ̄γ0ψ (and in strictly two dimen-

sions this gives a nonvanishing integral when the fermionic zero mode is inserted).

The final result that we have obtained for the one-loop correction to the mass of the

kink, eq. (7.9), and correspondingly for the correction of one of the central charges, eq. (8.5),

is given by −m/π. In the calculation of the previous section where we considered the

central charges we have identified this contribution as arising from a net momentum density

associated with fermionic modes along the domain line (whereas the classical contribution

to the central charge is a pure surface term). Thus at the quantum level there is a breaking

of parity in the extra regulator dimension which is induced by the kink background, similar

to what occurs in the minimally susy kink [17].

Compared to previous calculations of quantum corrections to two-dimensional susy

kinks we have noticed in particular two new features of the N = 2 CP1 model with

twisted mass term: whereas in other N = 2 susy kink models extended susy leads to a

cancellation of the anomalous contributions [22, 26], in the N = 2 CP1 model they add

up. Related to this is the fact that in the N = 2 CP1 model the complex fermion zero

mode has definite chirality with respect to the domain line employed in our dimensional

regularization scheme. Another noteworthy difference to other susy kinks is the appearance

of fermionic surface terms in the one-loop corrections to the central charge, cf. eq. (8.3),

which neither occurred in other susy kink models considered so far nor in the case of 4-

dimensional (Coulomb phase) BPS monopoles, which with N = 2 also receive anomalous

contributions to their central charge [18].

To conclude, we have presented an explicit calculation of the one-loop corrections to

both mass and central charge of the susy kink of the N = 2 nonlinear sigma model with

twisted mass and found agreement with the exact results obtained by Dorey in ref. [5].

The nontrivial corrections have been identified as being associated with an anomalous

contribution to the central charge [14] that in our scheme appears as parity violation

in the higher dimension used to imbed the susy kink as a domain line, which carries

chiral domain wall fermions. This mechanism is completely parallel to the anomalous
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contributions obtained in the minimally susy kink in 2 dimensions as well as the N = 2

susy ’t Hooft-Polyakov monopole [18], where the anomalous contribution to the central

charge is required for consistency with the Seiberg-Witten solution. Indeed, as explained in

ref. [11], holomorphicity relates the latter to the anomalous central charge of the nonabelian

confined monopoles appearing in the Higgs phase of N = 2 SU(2) × U(1) theory, whose

effective low energy theory is given by the kinks of the two-dimensional N = 2 CP1 model

with twisted mass.
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[28] A. Rebhan, R. Schöfbeck, P. van Nieuwenhuizen and R. Wimmer, BPS saturation of the

N = 4 monopole by infinite composite-operator renormalization, Phys. Lett. B 632 (2006)

145 [hep-th/0502221].

– 16 –

http://jhep.sissa.it/stdsearch?paper=04%282004%29066
http://jhep.sissa.it/stdsearch?paper=04%282004%29066
http://arxiv.org/abs/hep-th/0403158
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C045010
http://arxiv.org/abs/hep-th/0412082
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C13005
http://arxiv.org/abs/hep-th/0602004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C045016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C045016
http://arxiv.org/abs/hep-th/9810068
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C105021
http://arxiv.org/abs/hep-th/0109110
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB648%2C174
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB648%2C174
http://arxiv.org/abs/hep-th/0207051
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB594%2C234
http://arxiv.org/abs/hep-th/0401116
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB131%2C357
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB131%2C357
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB247%2C471
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB247%2C471
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB508%2C449
http://arxiv.org/abs/hep-th/9707163
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB542%2C471
http://arxiv.org/abs/hep-th/9802074
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NJOPF%2C4%2C21
http://arxiv.org/abs/hep-th/0011027
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C045013
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C045013
http://arxiv.org/abs/hep-th/0011258
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB544%2C432
http://arxiv.org/abs/hep-th/9808140
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NJOPF%2C4%2C31
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NJOPF%2C4%2C31
http://arxiv.org/abs/hep-th/0203137
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB679%2C382
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB679%2C382
http://arxiv.org/abs/hep-th/0307282
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB632%2C145
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB632%2C145
http://arxiv.org/abs/hep-th/0502221


J
H
E
P
0
9
(
2
0
0
7
)
0
6
9

[29] A. Rebhan, P. van Nieuwenhuizen and R. Wimmer, Quantum mass and central charge of

supersymmetric monopoles: anomalies, current renormalization and surface terms, JHEP 06

(2006) 056 [hep-th/0601029].

[30] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press,

Princeton U.S.A. (1992).
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